Computing the graph-based parallel complexity of gene assembly
نویسندگان
چکیده
We consider a graph-theoretical formalization of the process of gene assembly in ciliates introduced in Ehrenfeucht et al (2003), where a gene is modeled as a signed graph. The gene assembly, based on three types of operations only, is then modeled as a graph reduction process (to the empty graph). Motivated by the robustness of the gene assembly process, the notions of parallel reduction and parallel complexity of signed graphs have been considered in Harju et al (2006). We describe in this paper an exact algorithm for computing the parallel complexity of a given signed graph and for finding an optimal parallel reduction for it. Checking the parallel applicability of a given set of operations and scanning all possible selections amount to a high computational complexity. However, an example shows that a faster approximate algorithm cannot guarantee finding the optimal reduction.
منابع مشابه
Parallel complexity of signed graphs for gene assembly in ciliates
We consider a graph-based model for the study of parallelism in ciliate gene assembly, where a signed graph is associated to each micronuclear gene and the gene assembly is modeled as a graph rewriting process. A natural measure of complexity for gene assembly counts the minimal number of parallel steps needed to reduce the associated signed graph. We investigate the complexity of several class...
متن کاملGraph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملBi-objective Optimization for Just in Time Scheduling: Application to the Two-Stage Assembly Flow Shop Problem
This paper considers a two-stage assembly flow shop problem (TAFSP) where m machines are in the first stage and an assembly machine is in the second stage. The objective is to minimize a weighted sum of earliness and tardiness time for n available jobs. JIT seeks to identify and eliminate waste components including over production, waiting time, transportation, inventory, movement and defective...
متن کاملImproved Parallel Processing of Massive De Bruijn Graph for Genome Assembly
De Bruijn graph is a vastly used technique for developing genome assembly software nowadays. The scale of this kind of graph can reach billions of vertices and edges which poses great challenges to the genome assembly task. It is of great importance to study scalable genome assembly algorithms in order to cope with this situation. Despite some recent works which begin to address the scalability...
متن کاملParallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 411 شماره
صفحات -
تاریخ انتشار 2010